THERMAL RESISTANCE OF MULTICONTACT PACKETS

T. A. Kurskaya, E. P. Levchenko, UDC 536.2.023
R. S. Mikhal'chenko, A. M. Rybalko,
and B. Ya. Sukharevskii

A method of calculating the thermal resistance of multicontact packets is proposed. A com~
parison of the calculation with the experiment is given.

Heat transfer in multicontact packets of plates under vacuum condifions is accomplished mainly by
heat conduction through the contact areas of the plate surfaces,

Owing to the greater heat conduction of the contact areas in comparison with the conduction between
the contacts, contraction of the lines of thermal fluxes toward the areas occurs, and the isotherms are
curved and have a complex appearance near the contacts ([1], p. 15).

We will present a schematic pattern of heat transfer in a multicontact packet in which the thickness
of each plate is greater than the sum of the height of the microprojections of the upper and lower contacts
(by two and more orders of magnitude). This pattern can be depicted as shown in Fig. 1 depending on the
number of areas in contact.

The contact surfaces as a whole form the actual contact area of the plates and act as resistances con~
nected in parallel. Each plate of the packet can be regarded as consisting of a set of elements with adiabatic
surfaces having two contact surfaces each. Then the total thermal resistance of the plate can be found by
analogy with the determination of the total electrical resistance on the basis of the condition of parallel-
acting resistances,
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Fig. 1. Schematic pattern of the flow of heat in a
multicontact packet of plates with 6pl > sum of the
heights of the microprojections of the upper and
lower contacts: a, b) for a large and small number
of contacts on the surface, respectively; 1) lines
of thermal flux; 2) isotherms,
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Z heat transfer in an ellipsoid with
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As an element we take an ellipsoid of revolution with semimajor and semiminor axes he =6p}/2 and
be =nhg. We will determine the temperature field of such ellipsoid, considering a, he, be, q, and X are
given and using certain assumptions made when deriving the formula for the temperature field in a sphere
with two contact surfaces [2], namely, we assume that the contact surfaces are not flat but are a part of the
surface of the ellipsoid. Then in view of the smallness of the area of the contact spot we can consider that

a/he =sin @,

A two-parameter family of ellipsoids of revolution aboutf the x axis (parameters k, n) with be < he in
a rectangular coordinate system (Fig., 2) is described by a system of three equations (for ellipsoids of re-
volution with be > he it is necessary to change the places of the x and y axes):

x = kcosOchy,
Y = ksines_hﬂcosm,
z =k sin 0 sh 1 sin o.

We introduce the notations:
’ t=chn, v=-cos.

Then we can obtain the formula for the temperature field of an ellipsoid with two contact surfaces, taking
into account axial symmetry, by integrating the Laplace equation written in ellipitical coordinates [3] for
the following boundary conditions:
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for the following boundary conditions:
‘—-%-, 0<<o
O | _fe=1 0, ¢<0<u—gp @
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Since the product of two Legendre's polynomials of the same order as a function of the variables ¢ and
v is the particular solution of Eq. (1), we write the general solution of (1) in the following form:

T (& v) = X Py () P, (v) (E<E). @)

k=0

Using an elliptical coordinate system, we can write the boundary conditions (2)

1260



L
74

R
N, \ . g4

AN

a
z 5 o

~. ¢ — 1)
\\ \.4%;2 o
2 b
10 \_A\V . \
) A . /
[ X\ T h K e
It Ji 06 -
Il \g“.\h 4 -
-—_=T '2\\\0\_0._0
210’ a2 —
Fig. 3 Fig, 4 P

Fig. 3. Thermal resistance R (deg-m?/W) as a function of the
specific force pgp (MN/ m? for multicontact packets of plates
with 6p1 = 0.1 mm, n = 320 units and 5p1 = 0,2 mm, n = 175 units
of stainless steel Kh18N10T-M: I, II) data of calculation by theore~
tical model in [1]; 1, 2) the same, in [5]; a, b) data of calculation
by Eq. (7) for w = 0.8.and 0.7, respectively; circles: experimental
data,

Fig. 4. Coefficient of contraction of the ellipsoid w =be/hg 25 a
function of the specific force psp (MN/ m?) for packets of plates of
stainless steel Kh18N10T~M: 1) 6p] = 0.1 mm, n = 320 units; 2) dp]
= (0.2 mm, n =175 units,

VeE—1 aT | — ). (4)
ky BB—wv?  0E ’g:’g:
We rewrite Eq. (3) in the following manner:
TE V) =a+ FaP(BP () (E<E) 5)

k=]
and find the coefficients 4, and aj.
To determine the coefficients g (k =1, 2,3, .. .) we use boundary conditions (4), using in so doing
the orthogonality of Legendre's polynomials on the interval =1, 1]. For this purpose we differentiate (5)
with respect to ¢, multiply by v (£2=1)/kvE = vZ, and, taking into account (4) and that [| P (x)|* = 2/ (2k + 1),
we obtain

o Q
2k + 1) kyg : .
= e m(f“f) P (s OVE = ot sinodo

4

_ @kt DRg[—1r—1] [ T
~— VE TR X_“Oj Py (cos8) V'EZ— cos®O sin 8 d6.

Thus forallk=1,2,3,...

Ay, =0
and
(4 — 1) & g e
Qo == ~—— ’:—"‘:—_._:‘—TO—LW P 6 2 = i
. TV E TP ) j 21 (€05 8) J/ E2— cos® @ sin 0 d6.

0
After substituting cos § = t, we obtain that

4k —1) kyg
AVE—~T Pui(g) -

cos @
y Py () VE—Rdt.
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To find coefficient ay without losing generality, we assume that the temperature in the equatorial section
of the ellipsoid is equal to zero [2], Then

a, =0.

We finally write the formula of the temperature field of an ellipsoid with two contact areas in the fol-
lowing manner:

B\,
T v = L E Bup-1Pon1 (E) Pons (),

BT
Vg k=1
where
4k 1 €os @
by = ———— | Py (0O0V B —£ dt;
b= 5 OV G F d;
e he
ky = vV hZ— b2 and§, = ?f%:“l{;‘

To simplify the calculations we assume the temperature of the contact area to be equal to the arith-
metic mean of the temperatures in the center and at the edges of the area [2]:

7o _TEy 1)+ T (&, cosq)
av 9 .

The temperature difference between the upper and lower contact areas is equal to
AT = 2T,,.

The thermal resistance of the ellipsoid with two contact areas isequal to

AT 2Ty
gna? qna?

or finally

0

1
Re = e 3 ot (P (014 Pas s 9]

We determine the radius of the contact spot by Hertz' formula with substitution of the value for the
total force Pt [2], assuming that transverse deformation of the ellipsoid is absent and that force Pt creates
only longitudinal deformation (Poisson's ratio u = 0) [4]:

o
a=0.93,0‘/£i£~/(1—m)2.
E

For the model we selected with orderly packing of the elements (ellipsoids), viz., simple cubic pack=-
ing, the porosity of the plate m = 0.476. After substituting the values of m and p, we obtain finally

B 3 he 8 s
a=143 —-—e—‘/ﬂjp_ = 1.43x2 Psp
E whe}) 5

ke

The contact resistance of one plate is equal to

Re 6)
Reont, p1= ,
On p Nl
where
N Fpl Fp1
N, =& andNe=——P =B _
Fpl 462 4n’h2

After substituting Ny into (6) we obtain
Reont. pl = 4%*hZRe.

The total contact resistance of the packet will be
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Reomt= 4hZ (n — 1) R,.

A comparison of the data on the thermal resistance of multicontact packets calculated on the basis of
the known theoretical models in [1] and [5] and by Eq. (7) with the experimental data is given in Fig, 3. As
we see from Fig, 3, the considerable divergence (from 3 to 8 fold) with the experiment is observed in cal-
culations by the theoretical model in [1]. With respect to the theoretical model in {5] the best agreement
was obtained for large values of the specific force (more than 20 MN/m?); for small values of the specific
force (about 5 MN/m?) the discrepency with the experiments is more than twofold,

The best agreement with the experiment is observed in calculating the thermal resistances of the
packets by Eq. (7) for average values of w, indicated in the graphs (curves a and b, Fig. 3).

Figure 4 shows n as a function of pgp for two packets obtained from experiments with conversion by
Eq. (7). The packets were made up of plates of stainless steel Kn18N10T~M with a thickness of 0.1 and 0.2
mm with a surface finish of V10 and V9, respectively. The surfaces of the plates were degreased during
assembly.

An analysis of the character of change of » (Fig. 4) as a function of the specific force for multicon-
tact packets vindicates our choice of the selected diagram of the heat flow in the packets and proposed method
of calculating the thermal resistance of packets. Actually, on compressing a multicontact packet of metal
plates the number of contacts participating in heat transfer increases (along with a slight increase of each
contact area) as the force increases, According to the selected diagram of heat flow in the packet, the heat
is redistributed as the number of contacts increases and the number of ellipsoids in the plate increases, but
the ellipsoids themselves contract, i.e., » decreases, Finally, the plates with a greater thickness but with
almost the same surface finish, w = be/he is smaller for the same pressure, since be, which is determined
by the distance between contacts, i.e,, the surface finish, remains practically unchanged.

Of unquestionable interest is the finding of the analytical dependence of w on the specific force, thick-
ness of the plates of the packet, mechanical properties of the contacting materials, and their surface guality.
It is proposed to do this in subsequent studies,

NOTATION

5p1’ Fpl are the plate thickness and area;

e be are the semimajor and semiminor axes of the ellipsoid;
a is the radius of the contact area;
p = b% /hg is the radius of the curvature at the contact point of the ellipsoid;
% = bhe/he is the coefficient of contraction of the ellipsoid;
Ny is the number of contact spots per unit nominal surface of contact of the plates;
Ng is the number of ellipsoids in the plate;
n is the number of plates in the packet;

E = 2EE,/ (E; + E,),
A= 202/ (A1 + Ay)

q
Re, Reont. pl» Reont
Py, Psp

W b

are the reduced modulus of elasticity and reduced coefficient of thermal conducti~
vity of the contacting materials with consideration of the boundary temperatures
T, and T,, respectively;

is the specific heat flux;

are the thermal resistances of the ellipsoid, plate, and packet;

are the total and specific compressive force of the packet.
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