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A method of calculating the thermal resistance of multicontact packets is proposed. A com- 
parison of the calculation with the experiment is given. 

Heat transfer in multicontact packets of plates under vacuum conditions is accomplished mainly by 
heat conduction through the contact areas of the plate surfaces. 

Owing to the greater heat conduction of the contact areas in comparison with the conduction between 
the contacts, contraction of the lines of thermal fluxes toward the areas occurs, and the isotherms are 
curved and have a complex appearance near the contacts ([i], p. 15). 

We will present a schematic pattern of heat transfer in a multicontact packet in which the thickness 
of each plate is greater than the sun-1 of the height of the mieroprojections of the upper and lower contacts 
(by two and more orders of magnitude). This pattern can be depicted as shown in Fig. I depending on the 
number of areas in contact. 

The contact surfaces as a whole form the actual contact area of the plates and act as resistances con- 
nected in parallel. Each plate of the packet can be regarded as consisting of a set of elements with adiabatic 
surfaces having two contact surfaces each. Then the total thermal resistance of the plate can be found by 
analogy with the determination of the total electrical resistance on the basis of the condition of parallel- 
acting resistances. 
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Fig.  1. Schemat ic  pa t te rn  of the flow of heat  in a 
mul t icontact  packet  of p la tes  with 5pl > sum of the 
heights of the mic rop ro j ec t i ons  of the upper  and 
lower  contacts:  a,  b) for  a l a rge  and smal l  number  
of contacts  on the su r face ,  respec t ive ly ;  1) l ines  
of t he rma l  flux; 2) i s o t h e r m s .  
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Fig. 2. Calculation model of 
heat t r ans fe r  in an ellipsoid with 
two contact areas .  

As an element  we take an ellipsoid of revolution with semimajor  and semiminor  axes he = 6p l /2  and 
be = ~he.  We will determine the tempera ture  field of such ellipsoid, considering a, he, be, q, and ~ are 
given and using cer tain assumptions made when deriving the formula  for the tempera ture  field in a sphere 
with two contact surfaces  [2], namely,  we assume that the contact surfaces  are  not fiat but are  a part  of the 
surface of the ellipsoid. Then in view of the smal lness  of the a rea  of the contact spot we can consider  that 

a / h e  = sin ~. 

A two-pa ramete r  family of ell ipsoids of revolution about the x axis (parameters  k, V) with be < he in 
a rectangular  coordinate sys tem (Fig. 2) is descr ibed by a sys tem of three equations (for ellipsoids of r e -  
volution with be > he it is neces sa ry  to change the places of the x and y axes): 

x = k cos Och ~1, 

y = k sin 0 sh 'r I cos r 

z =/~ sin O sh ~1 sin co. 

We introduce the notations: 
-=ch~l, v = c o s O ,  

Then we can obtain the formula  for the tempera ture  field of an ellipsoid with two contact sur faces ,  taking 
into account axial symmet ry ,  by integrat ing the Laplace equation writ ten in ellipitical coordinates [3] for 
the following boundary conditions: 

O~ ( ~ 2  1 ) ~  +-~v  (1 Oa, J=O (1) 

for the following boundary conditions: 

t q O<O<q~ 

OT 
On PeaSe ,[(0) { O, q~<O<z~--q~ (2) 

I++, ~--q~<o<~. 
t 

Since the product  of two Legendre ' s  polynomials of the same order  as a function of the var iables  ~ and 
v is the par t icu lar  solution of Eq. (1), we write the general  solution of (1) in the following form: 

=2 T (~, ~) akP~ (~) Ph (v) (~ ~ ~o). (3) 
k=O 

Using an elliptical coordinate sys tem,  we can write the boundary conditions (2) 
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T h e r m a l  r e s i s t a n c e  R (deg- m2/W) as  a funct ion of the 
spec i f i c  f o r ce  Psp (MN/m2) f o r  mu l t i con tac t  packe t s  of p la t e s  
with 5pl = 0.1 m m ,  n = 320 uni ts  and 6pl = 0.2 ram,  n = 175 uni ts  
of s t a in l e s s  s t ee l  KhlSN10T-M:  I,  II) da ta  of ca lcu la t ion  by  t h e o r e -  
t ica l  mode l  in [1]; 1, 2) the s a m e ,  in [5]; a, b) da ta  of ca lcu la t ion  
by  Eq.  (7) fo r  ~ -- 0 .8 .and 0.7,  r e s p e c t i v e l y ;  c i r c l e s :  e x p e r i m e n t a l  
data.  

F ig .  4. Coeff ic ien t  of con t r ac t i on  of the e l l ipso id  n = b e / h e  as  a 
funct ion of  the spec i f i c  f o r c e  Psp ( M N / m  2) f o r  packe t s  of p la t e s  of 
s t a in l e s s  s t ee l  KhlSN10T-M:  1) 5pl = 0.1 ram,  n = 320 units ;  2) 6pl 
= 0.2 ram,  n = 175 uni ts .  

We r e w r i t e  Eq.  (3) in the fol lowing manne r :  

(4) 

T (~, v) = a o -? ~ aaP h (~) p~ (v) (~ < ~o) (5) 

and find the eoeff ic ier i t s  a o and ak. 

To d e t e r m i n e  the coe f f i c i en t s  ak ( k = 1, 2, 3, . . . ) we use  bounda ry  condi t ions  (4), us ing  in so doing 
the o r thogona l i ty  of L e g e n d r e ' s  po lynomia l s  on the i n t e rva l  [ - 1 ,  1]. F o r  this  pu rpose  we d i f fe ren t i a te  (5) 
with r e s p e c t  to ~, mul t ip ly  by  J ~ ) / k V ~ - -  v 2, and,  taking into account  (4) and that  II Pk(x) II 2 _ 2 / ( 2 k  + 1), 
we obtain 

~ = 2 V ~ -  i P~(~o)~ 

(2k + I) k~q [(-- 1) k -  1] ~ 
= j" P~ (cos 0) ] / -~  - -  cos 2 0 sin 0 dO. 

0 

Thus  for  all k = 1, 2, 3 . . . .  

~ k  -~" 0 

and 

_ (4k  - -  1) koq 

Af ter  subs t i tu t ing  cos 0 = t,  we obtain that  

j ' P~k-~ (cos 0) ] / t  2 - -  cos ~ 0 sin 0 dO. 

0 

cos 

( 4 k - - 1 ) k o q  ,f  P2~ 1(0 ]/'~2o--t2dt. 
a,,h_l ---- ~, V~-~-(--1 P2~-, (to) - 

1 

1 2 6 1  



To find coef f ic ien t  a 0 without  los ing  gene ra l i t y ,  we a s s u m e  that  the t e m p e r a t u r e  in the equa to r i a l  sec t ion  
of the e l l ipso id  is equal  to z e r o  [2]. Then 

ao ==0. 

We f inal ly  wr i t e  the f o r m u l a  of the t e m p e r a t u r e  f ield of an e l l ipsoid  With two contac t  a r e a s  in the fo l -  
lowing manner :  

whe re  

= -- qk~ ~ bzk-lPsk-1 (~) P2h 1 (v), T (~, v) Z V ~o .1  

COS 

b*~ = P'2~-14k--(~o)I S P,h,_~(t)]/ ~2 o - - t  2 dr; 

1 

he 
ko V 2 9. = = h e -  b e "and ~o 

To s impl i fy  the ca lcu la t ions  we a s s u m e  the t e m p e r a t u r e  of the contac t  a r e a  to be equal to the a r i t h -  
me t i c  mean  of the t e m p e r a t u r e s  in the cen t e r  and at the edges  of the a r e a  [2]: 

Ta v ~ ,  T (~o, 1} + T (~o, cos q~) . 
2 

The t e m p e r a t u r e  d i f fe rence  be tween  the upper  and lower  con tac t  a r e a s  is equal to 

AT = 2Tav" 

The t h e r m a l  r e s i s t a n c e  of the e l l ipso id  with two contac t  a r e a s  is equal to 

o r  f inal ly  

AT 2Tav 
qua 2 qna 2 

co  

1 
~_~ a,k-~ {P~h-1 (~o)[ 1 + P~h-1 (cos ~)] }. Re ----- n~ko~ ~/~o 2 __ 1 sin I (p 

We d e t e r m i n e  the r ad ius  of the contac t  spot  by H e r t z '  f o r m u l a  with subst i tu t ion of the value for  the 
total  f o r ce  Pt  [2], a s s u m i n g  that  t r a n s v e r s e  de fo rma t ion  of the e l l ipso id  is absent  and that  fo rce  Pt  c r e a t e s  
only longitudinal  de fo rma t ion  (Po i s son t s  ra t io  ~ = 0) [4]: 

F o r  the model  we se l ec t ed  with o r d e r l y  packing  of the e l emen t s  (el l ipsoids) ,  vfz . ,  s imple  cubic  p a c k -  
ing,  the p o r o s i t y  of the plate  m = 0.476. Af te r  subs t i tu t ing  the va lues  of m and p, we obtain f inal ly  

a = 1.43 b~ Psp_ 1.43• 
h e ~ E  

The contac t  r e s i s t a n c e  of one plate  is  equal to 

Re (6) 
R conL pl = N---~-' 

whe re  

N~ = N~--~-e and N e -  Fpl _ Fpl 
Fpl 4b~ 4• " 

Af te r  subs t i tu t ing  N 1 into (6) we obtain 

Rcont. pl = 4• 

The total  con tac t  r e s i s t a n c e  of the packet  will  be 
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 oon, = 1) R e 

A compar i son  of the data on the t he rma l  r e s i s t a n c e  of mult icontact  packets  calculated on the bas i s  of 
the known theore t ica l  models  in [1] and [5] and by Eq. (7) with the exper imenta l  data is given in Fig.  3. As 
we see f rom Fig.  3, the cons iderable  d ivergence  (from 3 to 8 fold) with the exper iment  is obse rved  in ca l -  
culations by the theore t ica l  model in [1]. With r e spec t  to the theore t ica l  model in [5] the bes t  ag reement  
was obtained for  l a rge  values of the specif ic  force  (more than 20 MN/m2);  for  smal l  values  of the specif ic  
force  (about 5 M N / m  2) the d i sc repency  with the expe r imen t s  is more  than twofold. 

The bes t  a g r e e m e n t  with the exper imen t  is obse rved  in calculat ing the the rma l  r e s i s t a n c e s  of the 
packets  by Eq. (7) for  ave rage  values of x,  indicated in the graphs  (curves a and b, Fig.  3). 

F igure  4 shows "~ as a function of Psp for  two packets  obtained f rom exper imen t s  with convers ion  by 
Eq. (7). The packets  were  made up of p la tes  of s ta in less  s teel  Khl8N10T-M with a th ickness  of 0.1 and 0.2 
m m  with a sur face  finish of V10 and V9, r e spec t ive ly .  The su r faces  of the p la tes  were  degreased  during 
a s sembly .  

An analys is  of the c h a r a c t e r  of change of ~4 (Fig. 4) as a function of the specif ic  force  for  mul t icon-  
tac t  packets  vindicates  our  choice of the se lec ted  d i ag ram of the heat flow in the packets  and proposed  method 
of calculat ing the t he rm a l  r e s i s t ance  of packets .  Actually,  on c o m p r e s s i n g  a mult icontact  packet  of meta l  
p la tes  the number  of contacts  par t ic ipa t ing  in heat  t r a n s f e r  i n c r e a s e s  (along with a slight i nc rea se  of each 
contact  area)  as the force  i n c r e a s e s .  According to the se lec ted  d iag ram of heat  flow in the packet ,  the heat  
is red i s t r ibu ted  as the number  of contacts  i n c r e a s e s  and the number  of e l l ipsoids  in the plate i n c r e a s e s ,  but 
the e l l ipsoids  t hemse lves  cont rac t ,  i .e . ,  ~ d e c r e a s e s .  Final ly ,  the p la tes  with a g r ea t e r  thickness  but with 
a lmos t  the same  sur face  finish, ~ = b e / h e  is s m a l l e r  for  the same p r e s s u r e ,  since be,  which is de te rmined  
by the dis tance between contacts ,  i .e . ,  the sur face  finish,  r ema ins  p rac t i ca l ly  unchanged. 

Of unquestionable in te res t  is the finding of the analyt ical  dependence of ~ on the specif ic  fo rce ,  th ick-  
ness  of the p la tes  of the packet ,  mechanica l  p r o p e r t i e s  of the contacting m a t e r i a l s ,  and their  sur face  quality.  
It  is p roposed  to do this in subsequent  s tudies .  

5pl, Fpl 
h e , be 
a 

p : b2e/he 
~4 = be/he 
N~ 

Ne 
n 

= 2EIE2/(E I + E2), 

q 

Re, Rcont" pl, Rcont 
Pt, Psp 

I. 

2. 
3. 
4. 

5. 

NOTATION 

are the plate thickness and area; 
are the semimajor and semiminor axes of the ellipsoid; 
is the radius of the contact area; 
is the radius of the curvature at the contact point of the ellipsoid; 
is the coefficient of contraction of the ellipsoid; 
is the number of contact spots per unit nominal surface of contact of the plates; 
is the number of ellipsoids in the plate; 
is the number of plates in the packet; 

are the reduced modulus of elasticity and reduced coefficient of thermal conducti- 
vity of the contacting materials with consideration of the boundary temperatures 
T I and T2, respectively; 
is the specific heat flux; 
are the thermal resistances of the ellipsoid, plate, and packet; 
are the total and specific compressive force of the packet. 
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